
r"

Y , Comparison Betweeu Sparsely Distributed
Memory and Hopfield-type Neural

Network Models

liesrarrh I r i s t i t u l c f o r Advanced <:omputer Science
NASA Arncs Resrarrh Center

I< IACS 'I'R 86.3 I

(EASA-CR-18099 1) C C H F A B I S O Q E E T L E E l 1487-26 5 E 1
I E A R S E L Y DISTbXECTED EEnOf iY dbD
LCFPXELD-IYFE N E U E A L kETYCEK LCEELS (N A S A)
3 4 p A v a i l : h l I S HC AC3/B$ ClOl CSCL 09B Unclas

G3/62 Doe5722

Research Institute for Advanced Computer Science

\

I '

' I

' .

I .
Comparison Between Sparsely Distributed Memory and

Hopfield-type Neural Network Models

James D. Keeler

University of Calgomia, San Diego, Physics Department and

Institute for Nonlinear Science B-019, La Jolla, CA 92093

(December 1986)

ABSTRACT: The Sparsely Distributed Memory (SDM) model (Kanerva,

1984) is compared to Hopfield-type neural-network models. A mathematical

framework for comparing the two is developed, and the capacity of each model

is investigated. The capacity of the SDM can be increased independently of the

dimension of the stored vectors, whereas the Hopfield capacity is limited to a

fraction of this dimension. However, the total number of stored bits per ma-

trix element is the same in the two models, as well as for extended models with

higher order interactions. The models are also compared in their ability to

store sequences of patterns. The SDM is extended to include time delays so

that contextual information can be used to recover sequences. Finally, it is

shown how a generalization of the SDM allows storage of correlated input pat-

tern vectors.
1 .

.

- 2 -

Introduction

Hopfield (1982) presented an autoassociative memory model based on a

network of highly interconnected two-state threshold units (“neurons”). He

showed how to store randomly chosen patterns of Os and 1s in the network by

using a Hebbian (Hebb, 1949) learning algorithm. He was also able to show

that for symmetric connections between the units, the dynamics of this network

is governed by an energy function that is equivalent to the energy function of

an Ising model spin-glass (Kirkpatrick & Sherrington, 1979). The two-state

units used in the Hopfield model date back to McCulloch and Pitts (1943), and

models of this type are currently known as “neural-network models” (or “con-

nectionist models” or “artificial neural systems”). Similar models have been

investigated by Amari (1971), Anderson et. al. (1977), Kohonen (1980), Little

and Shaw (1978), and Nakano (1972).

The Hopfield neural-network model is attractive for its simplicity and its

ability to function as a massively parallel, autoassociative memory. Neverthe-

less, a number of limitations of the Hopfield model have been pointed out.

First of all, the storage capacity (the number of memory patterns that can be

stored in the network) is limited to a fraction of the number of processing ele-

ments (McEliece et al., 1986). Second, the standard Hopfield model is unsuc-

cessful at storing temporal sequences of memory patterns (Hopfield, 1982).

Third, as a model of the brain, it is unrealistic due to the requirement of sym-

metric connections between the units. Finally, it is quite limited in its ability to

store sets of correlated patterns.

Kanerva (1984) introduced a memory model known as Sparsely Distri-

buted Memory (SDM) (or Sparse, Distributed Memory), that is not restricted

by the limitations listed above. Although independently discovered, Kanerva’s

model is basically equivalent in mathematical form to a model of the cerebellar

- 3 -

cortex introduced by Marr (1969) and to the Cerebellar Model Arithmetic

Computer (CMAC) introduced by Albus (1971). I will follow Kanerva’s

description and denote the model SDM. The SDM model uses nonsymmetric

matrices in a two-stage system to store patterns, and it can function as an

autoassociative memory, a heteroassociative memory, or a sequential-access

memory. 1

In the following I develop a mathematical framework for comparing the

SDM and the Hopfield model. I then analyze the storage capacity of both

models and their ability to store sequences of patterns. I also show how the

Hopfield model can be thought of as a special case of a mathematical extension

of the SDM. I then compare the SDM to a few other models that have been

proposed to alleviate some of the limitations of the Hopfield model. Finally, I

show how the SDM can be used to store correlated sets of patterns.

Hopfield Model

In this section, I briefly review the Hopfield model in its discrete form

(Hopfield, 1982), and introduce the mathematical formalism that will be used

in discussing the SDM. The processing elements (units) in the Hopfield model

are simple two-state threshold devices: The state of the i fh unit, ui, is either

+ 1 (firing at the maximum rate) or -1 (not firing). Consider a set of n such

units with the connection strength from the jrh unit to the ifh given by Tij.

The net input to the ia unit from all of, hi, the other units is given by

N

j = 1
hi = C T i j ~ j . (1)

An autoassociative memory is one that associates a pattern with itself and is
synonymous with a content-addressable memory, whereas a heteroassociative memory
is one that associates one pattern with another, and a sequential-access memory yields a
temporal sequence of patterns.

- 4 -

The state of each unit is updated asynchronously (at random) according to the

rule

ui +g(hi) 9

where for the discrete model g is a simple threshold function

+ 1 if x > o 1 -1 if x < O
g (x) = unchanged if x = O . (3)

In this formulation, the dynamics is not deterministic because each unit is

updated at random times.

The state of all of the units at a given time can be thought of as a firing

pattern of the units. This pattern is just an n dimensional vector u whose com-

ponents are f 1. Each different pattern can be represented as a point in the n

dimensional state space of the units, and there are 2” distinct points in this

space. The goal here is to store a few “memory” patterns in this space as stable

fixed points of the dynamical system. This allows the system to function as an

accretive autoassociative memory: When the system is given as input a pattern

that is close to one of the stored patterns it will relax to that stored pattern (a

fixed point).

Suppose we are given M patterns (strings of length n of f 1s) that we

wish to store in this system. Denote these M memory patterns as pattern vec-

tors: pa = (pf,p?, . . . ,p,”), a = 1,2,3, . . . , M. For example, p1 might look

like (+ 1,- 1,+ 1,- 1,- 1, ...,+ 1). One method of storing these patterns is the

so-called Hebbian learning rule: Start with Tii= 0, accumulate the outer pro-

ducts of the pattern vectors

. T t T + [p a x p a] , for a = 1,2,3, . . . , M , (4)

where x denotes the outer product of the two vectors, and set the diagonal ele-

ments Til = 0. The resulting matrix, after learning all of the patterns, is given

- 5 -

where the 6, is necessary2 to set the diagonal terms to zero. It is shown below

that these stored memory patterns, pa, will be attracting fixed points of Equa-

tion (2) provided that certain conditions on the number of patterns and their

statistical properties are satisfied.

To see why this rule for storing the patterns works, suppose that we are

given one of the patterns, ps, say, as the initial configuration of the units. First

I will show that pp is expected to be a fixed point of Equation (2), then I will

show that pp is expected to be an attracting fixed point. I present the analysis

in detail here because this same analysis is carried out again for the more com-

plicated cases of the SDM.

Insert Equation (5) for T into (2). The resulting expression for the net

input to the i fh unit becomes

The important term in the sum on a is the one for which a = p. This term

represents the “signal” between the input p@ and the desired output. The rest

of the sum represents “noise” that comes from all of the other stored patterns.

Hence, separate the sum on a into two terms: the single term that has a=p and

the rest of the sum, a# f3. The expression for the net input becomes I

hi = signali + noisei,
where

(7)

.
and

n

j = 1
signali = p?xpJBpJB - ~ p ?

This is a Kronecker 6: 6ij = 0 for i # j ; si, = 1, for i= j .

Note that this noise term is dependent only on the stored patterns; there is no

external “temperature” causing the noise in this model.

Summing on j in (8) yields

signali = (n -M >pip. (10)
Since n-M is positive for n > M , the signs of the signal term and pip will be

the same. Thus, if the noise term were exactly zero, the signal would give the

same sign as pip with a magnitude of n-M, and pp would be a fixed point of

Equation (2). It is easy to see that pp would be an attracting fixed point (if the

noise were zero) by considering an initial condition that is slightly displaced

from pp. If the initial condition differed by k bits from pB, the signal would

still give the same sign as pis, with strength n - M - 2 k . Thus, if k e (n - M) / 2

the signal would give the proper sign, and pp would be an attracting fixed point.

If the stored patterns are chosen to be orthogonal vectors, the noise term

(7) would be exactly zero. However, if the patterns are chosen at random,

they are only pseudo-orthogonal, and the noise term may be nonzero. Its

expected value, however, will be zero, c noise> = 0, where e > indicates sta-

tistical expectation, and its variance will be

02= n(M-1). (1 1)
Hence, the probability that there will be an error on recall of pis is given by the

probability that the noise is greater than the signal, as shown in Figure 1. For

n large, the noise distribution is approximately Gaussian, and the probability

that there is an error in the irh bit is

. a

Thus, for p e < < 1 (M not too large), the stored patterns should be attracting

- 7 -

fixed points.

Figure 1. The distribution of noise as described by Equation (9). A bit will be in error
when the noise is greater than the signal. The probability of error is equd to the area
shaded under the curve.

Description of Sparsely Distributed Memory

In this section, I give a qualitative description of the Sparsely Distributed

Memory as formulated by Kanerva (1984). The description is based on parallels

between a conventional computer memory and the SDM. I develop the

mathematical description that will ease the comparison to the Hopfield model in

the next section.

The random-access memory of a conventional computer is an array of

storage locations. Each storage location is identified by a number (the address

of the location) that specifies the position of the location in the array. Informa-

tion is stored in the location as a binary word (the contents of the location).

Note that the address of the storage location and the contents of that location

need not have anything in common. Data are written into a location by giving

both the address of the location and the data to be written. The address points

to the proper location, and the contents of that location are replaced by the

given data. Similarly, data are read from a location by specifying the address of

the location, and the contents of that location are read out as the data. The

- 8 -

number of locations that can be accessed in this manner is determined by the

length of the input address. If the address is a binary word of length n , then

2" locations can be accessed. For example, if n = 16, then 216 = 64K words

of memory can be accessed; these words could be 32 bit, 64 bit, or any other

size.

The set of 2" distinguishable n-bit addresses is called the address space

(this space is identical to the state space described above). Consider an exten-

sion of the conventional computer memory to a memory with very large

addresses. For n moderately large, the number of possible addresses becomes

astronomical. Indeed, for n = 1000, 2" is larger than the number of atoms in

the known universe.. Obviously, there is no way of associating all, or even a

relatively small fraction, of these addresses with physical storage locations.

How can one construct a memory using these large addresses in a sensible

manner? Kanerva's answer is as follows: Pick at random rn addresses to be

associated with physical storage locations (rn might be a million to a billion).

Becausem is small compared to 2", these randomly chosen addresses represent

a set of storage locations that is sparsely distributed in the address space.

To function as a memory, this system should be able to write and read

data. To write, we need as input both the address and the data itself (just as in

a conventional computer memory). In the SDM, the address size and the data-

word size are allowed to be different. However, for the SDM to function as a

autoassociative memory and to compare it to the Hopfield model, I consider

only the case where the data-word is the same size as the address; both the

address and the data are n-bit vectors o f f 1s as considered above.

Given an address, where are the corresponding data written? The input

address is quite unlikely to point to any one of the m randomly chosen storage

locations. However, some of the storage locations are closer to the given

- 9 -

address than others. In the SDM, the data are written into a few selected

storage locations that have addresses close to the input address. The selection

rule is: select all locations whose addresses are within a Hamming distance D of

the input a d d r e ~ s . ~ If we view these n-bit addresses as points in an n -

dimensional address space, the selected locations will lie within a (hyper) sphere

of Hamming radius D centered at the input address (see Figure 2). The data

Memory location
i n address space I

ti o n s 3 / 0 6 .

of Hamming
radius D

Address space of 2"possible points

Figure 2. This qualitative picture of address space shows storage locations in the address
space, an input address to read from or write into memory, and the Hamming
(hyper)sphere containing a l l selected locations.

are written into every storage location within this sphere. This is why we say

that the information is disnibured over all the selected storage locations. How- l
ever, the write procedure is a little more complicated than for a conventional

computer. Instead of just replacing the old contents of a storage location with

the new data, the new data vector is added to the previous contents. Thus,

each of the storage locations in the SDM is actually a set of n counters. The

reason is that we may wish to write two or more data'vectors into any given

storage location, because the spheres chosen by two input addresses may

The Hamming distance of two n-bit binary vectors is simply the number of bits at
which the two vectors differ. The Euclidean distance is proportional to the square-root
of the Hamming distance.

Input Address Data in

Figure 3. A schematic picture of the functioning of the SDM. The input address comes
in at the top as the vector a. This address is compared to ai l of the addresses of the
storage locations. These addresses are contained in the matrix A with elements Aii. The
selected loutions have their select bit set to 1 in the vector s. The data are written into
the selected locations. The contents of the j" counter of the i* location is given by the
matrix element C,. In a read operation, the contents of the selected locations are added
together to give the field h. Finally, this field is thresholded to yield the output data d.

- 11 -

overlap.

To read from the SDM, the address of the desired data is given and com-

pared to the M addresses of the storage locations. Again, select all locations

whose addresses lie within a Hamming sphere of radius D of the given address.

The values of these selected locations are added together in parallel to yield n

sums (see Figure 3). These sums are thresholded at zero giving a + 1 in the ir"

bit if the irh sum is greater than zero, and a -1 if the irh sum is less than zero.

Note that this is a statistical reconstruction of the original data word. The out-

put data should be the same as the original data as long as not too many other

words have been written into the memory.

This qualitative description of the SDM may seem quite different than the

Hopfield model described above, but the read-write rule is just a generalized

Hebbian learning rule as shown below.

Layered Network Description

The Hopfield model can be viewed as a two-layer neural network with each

layer having n threshold units. The connections between the two layers of units

is given by the symmetric n x n matrix T. For the standard autoassociative

Hopfield model, the output of the second layer is fed back into the first layer,

effectively making the system a one-layer network. The matrix elements of T

are given by the Hebbian learning rule. Each unit in the system is updated

asynchronously, independently of the other units.

The SDM, on the other hand, can be viewed as a three-layer network

(Figure 4). The first layer is the n input units (the' input address, a), the mid-

dle layer is a layer of rn hidden units (the selected locations, s, and the third

layer is the n output units (the data, d). The connections between the first

layer and the second layer are fixed, random weights and are given by the m x n

- 12-

matrix A. The connections between the hidden units and the output layer are

given by the n x m connection matrix C. These matrix e!ements are modified

by a Hebbian learning rule. This connection matrix C is analogous to the con-

nection matrix T of the Hopfield model. The output layer can be fed back into

the input layer effectively making the SDM a two layer network.

Figure 4. A schematic diagram of the SDM as a three-layer network processing units.
The input pattern is the bottom layer a, a set of n units whose values are f 1. The mid-
dle layer is a set of m hidden units that take on the value 0 or I and are denoted by the
select vector s. In the SDM, m is assumed to be much larger than n . The weights
between the 6rst two layers is the matrix A. The thud layer is the output data d. also a
set of n units of k 1. The connections between the second and the third layer are given
by the matrix C .

The SDM typically has m > > n, so that the first layer of the network

effectively blows the n bit pattern up into a large m dimensional space. Most of

the units in the hidden layer are not active. Hence, the hidden unit layer can

be viewed as a type of sparse coding of the input pattern (Willshaw et al. ,

1969). A hidden unit is turned on if the net input to that unit is above a cer-

- 13 -

tain threshold. The input pattern a is a vector of length n. The weights to the

krh hidden unit from the input units is just the krh row of the A matrix and

can be thought of as an n dimensional vector ak . If both the input pattern and

the weights to each hidden unit are binary vectors, then only the hidden units

whose weights ak are within D Hamming units of the input a will be activated;

the activated hidden units will be those for which ak is close to a (the dot pro-

duct, ak-a is above the threshold).

Mathematical Formulation of SDM

In this section, I will use our earlier mathematical formalism to describe

and analyze the SDM. Vector notation will be used here because, unlike the

Hopfield model, the units in the SDM are updated synchronously (all units are

updated at the same time). Let the addresses of the storage locations be given

in terms of vectors of length n o f f 1s. Since there are rn storage locations in

the system, there will be m corresponding addresses of those locations. Let A

be the matrix whose krh row is the address of the krh storage location (see Fig-

ure 3). Hence, A will be an m x n matrix of random f 1s. Let the input

address be a, a vector of f 1s of length n. The contents of the storage loca-

tions will be denoted by a counter matrix, C , an n x m matrix of integers. In a

read or write operation, the input address a is compared to the addresses of the

rn locations and the locations within the Hamming sphere are selected. Denote

this selected set by a select vector s, an rn dimensional vector that has 1s at the

selected locations and Os everywhere else.

Given an input address a, the selected locations are found by

s = 8,(A a), (13)

where OD is the Hamming-distance threshold function giving a 1 in the k th row

if the input address a is at most D Hamming units away from the kth address

- 14 -

in A and a 0 if it is further than D units away, Le.,

The select vector s is mostly Os with an average of 6m Is, where 6 is some

small number dependent on D ; 6<< 1 (6= 114; in a typical implementation).

Explicitly, 6 is given by

where p(x) is the probability distribution of the number of points of distance x

in the address space from a given point. In this case, p(x) is just a binomial

n distribution centered at -
2 '

Once the input is presented at the first layer and the locations are selected

in the middle layer, the data is output in the final layer. The net input, h, to

the final layer is the sum of the selected locations, which can be simply

expressed as the matrix product of C with s:

h = Cs.
The output data is then given by

d = g (W , (17)
where g is the vector analog of the threshold function of Equation (3),

+ I if X i > O

unchanged if xi=O

How are patterns stored in the SDM? To store a pattern, we must have

both the input pattern (address) and the output pattern (data). Suppose we are

given M input-output pairs to store in the SDM: (a1,d1),(a2,d2), - - ,(aM,#).

This input-output-pair notation is general and allows association between any

.

- 1 5 -

two sets of patterns. For example, in an autoassodative memory such as the

Hopfield model, @ = a=, whereas a sequential memory is created by setting

da aa+1

To store the patterns, form the outer product of the data vectors and their

corresponding select vectors,

M

or=l
C = Cdaxsa,

where the select vector is formed by the corresponding address

sa = O,(Aaa). (20)
The storage algorithm (19) can be thought of as a generalized Hebbian learning

rule similar to that of (5) .

Now that this mathematical machinery for the SDM has been built, the

rest of the analysis proceeds analogously to the discussion of the Hopfield

model. First I will show that data written at a given address can be read back

from that address. This is analogous to showing that the stored patterns are

fixed points of the Hopfield model.

Suppose that the M address-data pairs have been stored according to Equa-

tion (19). Here I show that if the system is presented with as as input, the out-

put will be db. Setting a = as in Equation (13) and separating terms as before,

the net input (16) becomes

h = signal + noise,
where

signal = d@(sP-sb)
and

. M
noise = C da(sa.sP).

- s
Recall that the select vectors have an average of 6m 1s and the remainder Os.

- 16 -

Hence, the expected value of the signal term is

c signal> = 6rndS. (24)
Since 6m is positive, the read data will be dp as conjectured (assuming negligi-

ble noise).

Assuming that the addresses and data are randomly chosen, the expected

value of the noise is zero, with variance

0 2 = (M - 1) 6 2 m (l + 6 2 (r n - l)) . (25)
The probability of incurring an error in any particular bit of a recalled pattern is

a

The noise term has the same characteristics whether the addresses them-

selves or other patterns are stored as data. Thus, the SDM can serve as a

heteroassociative memory as well as an autoassociative memory. Since the

length of the data word is equal to that of the address, the output pattern can

be fed back in as a new input address. Iterating in this manner on autoassocia-

tive patterns wil l cause the system to converge onto the stored pattern in much

the same manner as for the Hopfield model. Since the connection matrix is not

symmetric, there is no energy function governing the behavior of the system.

Nevertheless, the above analysis shows that the stored data can be retrieved

with high probability as long as not too many patterns have been stored.

Note that if OD is allowed to be a generalized vector function rather than

the special function described above, then the Hopfield model results from set-

ting rn = n and e D (A a) = a, Le., Oo(A) = 1, the identity operator. Thus,

the Hopfield model may be viewed as a special case of a simple generalization

of the SDM . However, no choice of D and A in the standard SDM model

yields 00 (A) = 1.

Capacity of the SDM and the Hopfield Model

- 17 -

An important question to ask about these models is how many patterns

can they store. To answer this question, we can restrict our discussion to

autoassociative memories. The number of patterns that can be stored in the

memory is known as its capacity. There are many ways of defining capacity.

One definition is the so-called epsilon capacity, which is simply the number of

patterns that can be recalled within epsilon error of the stored pattern vectors.

It has been shown theoretically that the epsilon capacity, c,, for the Hopfield

model is c, = nl2logn for E> 0 and co = n/4logn (McEliece, et al., 1986) for

e = 0 in the limit as n+- (where log is to the base e) .

The epsilon capacity may characterize the Hopfield model well for large n ,

but for small n , other rules have been used. The folklore about the capacity of

the Hopfield model is that spurious memories start to appear when the number

of stored patterns is about 0.14n and the performance of the system is severely

degraded beyond that point. This view has been supported by numerical inves-

tigations (Hopfield, 1982) and theoretical investigations (Amit et af. , 1985).

The capacity of the SDM is not as well understood. First of all, there are

more free parameters in the SDM than in the Hopfield model. In the SDM, the

capacity is a function of n ,m , and D . Kanerva shows the capacity to be propor-

tional to rn for fixed n and the best choice of Hamming distance, D. The point

here is that the capacity for the SDM increases with m independently of n.

Preliminary numerical investigations of the capacity of the SDM by Cohn, Kan-

erva, and Keeler (1986) have shown that spurious memories appear at approxi-

mately 0.13m, and that the spurious memories can be fixed points, cycles, or

"chaotic" wanderings throughout a portion of the pattern space. Hence, a

good rule of thumb for the capacity of the SDM is 0.13m (for n = 100- 1000).

For a given n , the SDM can store more patterns than the Hopfield model

by increasing rn . However, how does the total stored information (total number

- 18-

of bits) compare in the two models? The models can have different n with the

same number of stored bits, so that the vector capacity does not yield a fair

comparison of the total information capacity of the networks. Therefore, I

choose to use a different definition of capacity that gives a more equitable com-

parison.

The capacity used here has its roots in information theory (Shannon, 1948)

and measures the total information stored in the network. This is basically the

same definition used by Wiilshaw et al. (1969). Define the bit capacity as the

number of bits that can be stored in a network with fixed probability of getting

an error in a recalled bit. The bit capacity of each system can be investigated by

setting pe = constultj in Equations (12) and (26).. Setting pe to a constant is

tantamount to keeping the signal- to-noise ratio (fidelity) constant. Hence, the

bit capacity of these networks can be investigated by examining the fidelity of

the models as a function of n, m , and M . From Equations (10) and (11) the

fidelity of the Hopfield model is given by

This formula yields fixed probability of getting an error in a stored bit for con-

stant R . For example, given R = 3, the noise is greater than the signal at 3

standard deviations, and the probability of getting a bit error is'= 0.0055. From

Equations (24) and (25), the fidelity for Kanerva's model is given by

where c = 6m is the signal strength (the number of selected locations). For

c =constunt (c = d F / R) , the fidelity for the SDM increases monotonically

with m and is approximately the same as the fidelity for the Hopfield model in

the limit of large m when m = n .

- 19 -

Before looking at the total stored information, we can get an approximate

expression for the vector capacity by solving for M in these equations. For the

Hopfield model, the capacity in the limit R >> 1, M >> 1 is given by

n 2 M = -(1- 7) 9 R 2 R

whereas the corresponding expression for the SDM (for large m , M) yields

This last formula shows that the number of patterns of length n that can be

stored in the SDM is independent of n. For large m , the number of patterns

stored in the SDM increases linearly with m , and the capacity is not limited by

n as it is for the Hopfield model.

Note that these expressions for the vector capacity were derived by setting

the probability of getting an error in a particular bit (p,) constant. The probabil-

ity of getting M all of the pattern vectors correct is then given by (l - ~ ,) ” ~ .

Since n ‘can be different for the two models, it is more relevant to com-

pare the total number of bits (total information) stored in each model. For the

Hopfield model the bit capacity scales as

nn 2 bits = - (1 - -),
R2 R2

whereas for the SDM, in the limit of large m , the number of stored bits goes

as

mn
R

bits = y (l - c 2 1 m) .

Since t h e m m b e r of elements in T is n 2 and the number of elements in C is

nm, the bit capacity for each model divided by the number of matrix elements

is the same (in the limit of large n and m) ? This shows that the asymptotic

I have only divided the bit capacity for the SDM by the number of elements in C
because these are the only elements that are variable and c contains the Hebbian

- 20 -

amount of information stored per matrix element in the SDM and the Hopfield

model is the same, - 1
R2'

Sequences

In an autoassociative memory, the system relaxes to one of the stored pat-

terns and stays fixed in time (until a new input is presented). However, there

are many situations where it is desirable to have the recalled patterns change

sequentially in time. For example, a song can be remembered as a string of

notes played in the correct sequence; cyclic patterns of muscle contractions are

essential for walking, riding a bicycle, or dribbling a basketball.

Suppose that we wished to store a sequence of patterns in the SDM. Let

the pattern vectors be given by (p 1 2 ,p . . . pM). This sequence of patterns

could be stored by having each pattern point to the next pattern in the

sequence. Thus, for the SDM, the patterns would be stored as input-output

pairs (aa,@), where aa = pa and da = pa+' for a = 1,2,3, ..., M-1. Conver-

gence to this sequence works as follows: If the SDM is presented with an

address that is close to p' the read data will be close to p2. Iterating the system

with p2 as the new input address, the read data will be even closer to p3. As

this iterative process continues, the read data will converge to the stored

sequence, with the next pattern in the sequence being presented at each time

step.

The convergence statistics are essentially the same for sequential patterns

as shown above for autoassociative patterns. Presented with pa as an input

address, the signal for the stored sequence is found as before

< signal> = 6rn pa+ (33)

learning coefficients. One could argue that the correct comparison should be the total
number of elements in A and C, which would yield a factor of ?h for the SDM.

- 21 -

Thus, given pu, the read data is expected to be pa++'. Assuming that the pat-

I terns in the sequence are randomly chosen, the mean value of the noise is

zero, with variance

e a*> = (M-1)62m(1+62(m-l)). (34)
Hence, the length of a sequence that can be stored in the SDM increases

linearly with rn for large m .
Attempting to store sequences like this in the Hopfield model is not very

successful. If the length of the sequence is greater than 2, the values of the

units at a given time typically become evenly distributed among all of the pat-

terns. The reason for this failure is that the units are being updated asynchro-

I

I nously. Suppose that a sequence of patterns (p 1 2 ,p , . . . , pM) is stored in the
M- 1

Hopfield network using T = 2 pa+lxpa. The state of each unit is updated
a=l

according to the states of all the other units, so that if the network is presented

with pl, the first few units will be updated and change their value to p2. After

about n / 2 units have changed their value, the local field for the other units

now points half to p2 and half to p3. Thus, some of the units get updated to

the states for p3 before the others achieve the correct values for p2. The net

result after = Mn updates is that the units are typically distributed over all of

the patterns in the sequence.

I This failure to recall sequences is only an artifact of asynchronous updat-

ing. If the Hopfield model is modified to update the units synchronously, the

Hopfield model will recall sequences just as described for the SDM. The

number of patterns that can be stored in the sequence is determined by the

signal-to-noise ratio and is equivalent to the capacity. Again, the length of the

longest sequence stored in the Hopfield model is limited to a fraction of pattern

size n , whereas in the SDM it is limited by the number of locations m , which

can be varied independently of n .

I .

- 22 -

Another method for storing sequences in Hopfield-like networks has been

proposed independently by Kleinfeld (1986) and Sompolinsky and Kanter

(1986) (see also Grossberg, 1971). These models relieve the problem created

by asynchronous updating by using. a time-delayed sequential term The equa-

tions for updating are as follows:

where T = paxpa, with T, = 0, D = pa+’xpa, k is a delay of a few time

steps, and the mean rate of asynchronous updating is n updates per unit time

step. When presented a pattern close to pl, this system relaxes exactly to p1

within k time steps. Then in the next k time steps the units update to p2.

Continuing in this fashion, the system will recover the stored sequence with a

new pattern being presented every k time steps.

This time-delay storage algorithm has different dynamics than the synchro-

nous SDM model. In the time-delay algorithm, the system allows time for the

units to relax to the fist pattern before proceeding on to the next pattern,

whereas in the synchronous algorithms, the sequence is recalled imprecisely

from imprecise input for the first few iterations and then correctly after that. In

other words, convergence to the sequence takes place “on the fly” in the syn-

chronous models - the system does not wait to zero h on the first pattern

before proceeding on to recover the following patterns. This allows the synchro-

nous algorithms to proceed k times as fast as the asynchronous time-delay algo-

rithms with half as many (variable) matrix elements.

Time Delays and Hysteresis

In Kanerva’s original work, he included the concept of time delays as a

general way of storing sequences with hysteresis. The problem addressed by

this is the following: Suppose we wish to store two sequences of patterns that

- 23 -

overlap. For example, the two pattern sequences (a,b,c,d,e,f, ...) and

(x,y,z,d,w,v, ...) overlap at the pattern d If the system only has knowledge of

the present state, then when given the input d, it cannot decide whether to out-

put w or e (see Figure 5) . To store two such sequences, the system must have

Figure 5. Two sequences are stored in the system. The first sequence (a,b,c,d,e,f, ...)
overlaps the second sequence (x.j,z,d,w,v, ...) at d. The system must have some
knowledge of the past states if it is to recover the sequences properly. This phenomenon
can be thought of as momentum or hysteresis in a dynamical system.

some knowledge of the immediate past. Kanerva incorporates this idea into the

SDM by using "folds." A system with F+1 folds has a time history of F past

states. These F states may be over the past F time steps or they may go even

fuither back in time, skipping some time steps. The algorithm for reading from

the SDM with folds becomes

where s(t -Ty) = 0, (A d(t-Ter)). To store the Q pattern sequences

1 2 construct the (p1,p1, . . . ,PI '1, (~ 2 ~ ~ 2 , . . . , ~ 2 3,- (PQ,PQ~ - ~PQ'),
matrix of the yrh fold as follows:

M 1 2 M 1 2 M

where any vector with a superscript less than 1 is taken to be zero,

- 24 -

 SF-'^ = OD(Apt-"), and wy is a weighting factor that would normally

decrease -4th increasing y.

Why do these folds work? Suppose that the system is presented with the

pattern sequence (p1,p1, . . . , p1 l) , with each pattern presented sequentially as

input until the ZF time step. For simplicity, assume that w y = 1 for all y . Each

term in Equation (36) will contribute a signal similar to the signal for the

single-fold system. Thus, on this time step, the signal term coming from Equa-

tion (36) is

1 2 M

The signal term will have this value until the end of the pattern sequence is

reached. The mean of the noise terms is zero, with variance

Hence, the signal-to-noise ratio is d F times as strong as it is for the SDM

without folds.

Suppose further that the second stored pattern sequence happens to match

the first stored sequence at t = q. The signal term would then be

With no history of the past, F = 1, the signal is split between pp" and p?",

and the output is ambiguous. However, for F > 1, the signal for the first pat-

tern sequence dominates and allows retrieval of the remainder of the correct

sequence.

Kanerva's formulation allows context to aid in the retrieval of stored

sequen'ces. Obviously, the Hopfield model could be extended to perform the

same sort of function, but it would still be limited in the length of the

sequences stored to some fraction of the word size times dF.

- 25 -

There are a large number of applications where context is an important

consideration. For example, context is essential in speech recognition: If I say

“bat,” you don’t know if I am talking about something used to hit a ball or a

small winged mammal that flies at night, but if I say “the boy swung the bat,”

the ambiguity is relieved.

Time delays are prevalent in biological systems and seem to play an impor-

tant role there also. For example, the signal time between two units depends

on the length of the axon connecting the two units and the diameter of the

axon. The above formulation might be useful in understanding the importance

of these time delays.

Continuous Equations and Optimization Problems

The Hopfield model has also been formulated in terms of continuous

dynamical equations (Hopfield, 1984). Continuous equations can also be writ-

ten down for the SDM,

where z is the characteristic self-relaxation time for the units, C is the same as

in Equation (19), the state of the ith input-output unit is g (v i) , and 81, and g

are continuous analogs of the discrete functions described earlier. This con-

tinuous system has similar behavior to the discrete version of the autoassocia-

tive SDM, except that storing sequences in this system fails for the same rea-

sons as described for asynchronously updated systems. To recover the proper-

ties of synchronous updating, a delay term could be included (Kleinfeld, 1986;

Sompolinskp & Kanter, 1986) or some sort of explicit clocking term could be

used.

Hopfield and Tank (1985) have used the continuous version of the

- 26 -

Hopfield (1984) model to gain approximate solutions to optimization problems.

This is done by constructing a T matrix that yields an energy surface with

minima at near-optimum solutions to the problem (see also Amari, 1971, 1974

and Cohen & Grossberg, 1983). So far, there has been no corresponding con-

struction of an energy function for the SDM. Indeed, one would expect that

such an energy function does not exist because of the asymmetric nature of C

in the SDM and the fact that fixed points are not always reached under itera-

tion of the autoassociative SDM.5 Hence, performing optimization problems

such as the traveling salesman problem with the SDM is not as straight-forward

as it is with the Hopfield model. Nevertheless, there is a measure of the good-

ness of a read operation for the SDM. The standard deviation of the com-

ponents of the field, h, achieves local maxima at the stored patterns in both

autoassociative and heteroassociative memory. The standard deviation is not

an exact analogy to the energy function of the Hopfield model, but this func-

tion might be useful for future work in optimization problems with the SDM.

Higher Order Interactions

Another generalization of the Hopfield model is to allow higher order non-

linear interactions between the units in the dynamical system. In the standard

Hopfield model and the single-fold SDM model, the interactions are between

pairs of units. This pairwise interaction leads to the linear-threshold rules given

in Equations (2) and (14). However, if higher order interactions between the

units are allowed, the threshold sum rule becomes a nonlinear tensor product.

Lee et af. (1985) and Baldi and Venkatesh (1986) have shown that using

higher order interactions can improve the capacity of the Hopfield model as

well as some of its dynamical properties. I briefly describe the discrete

5 This could just be an artifact of the synchronous update; fixed points might always
be reached using asynchronous update.

- 27 -

l
formulation of these higher order systems below and investigate the informa-

tion stored in these systems.

Consider n threshold units with interactions between c + l other units.

The updating algorithm for the system then becomes

where g is the same two-state threshold function as before, and ui is the state

of the ifh unit. To store the patterns p 1 2 ,p , - - ,pM in an autoassociative net-

work, construct the c + l order tensor T as

The signal-to-noise ratio for this system is found in a straightforward manner

similar to the calculation for the Hopfield model. The fidelity for this system is

given by

c12

4M-l' R =

I
l and the number of bits stored in the system for large n is just

.c+ 1

R 2
bits = -. (45)

I A similar generalization can be made for the SDM. The above system has

generalized the Hebbian learning rule to include interactions between many
I

I units. If we generalize in the same manner for the SDM, the dynamical equa-

tions become

n

j = 1
where the updating is done synchronously and si = e,(C A i j a j) . Again, to

- 28 -

store the M patterns in an autoassociative network, construct the c + l order

tensor C

n

j = 1
where sia = 80 (C Aiipja). The signal-to-noise ratio for this rule is

c12
R =

.I (M - l) (1+ *
m

From this expression the bit capacity for the SDM is found to be

m c n bits = -
R2 (49)

in the limit of large rn. The number of matrix elements in the model of Lee

et al. is just nC+l, whereas the number of elements for the SDM is nmc.

Hence, the number of bits per matrix element is the same for these two sys-

tems as well. Indeed, the number of bits per matrix element turns out to be

identical to that for the linear systems discussed above (7). 1 The indication is
R

that this might be a general result for all Hebbian-type learning rules, and that

the total information stored in systems of this type is a constant times the

number of matrix elements, independent of the particular model.

Correlated Input Patterns

In the above associative memories, all of the patterns were taken to be

randomly chosen, uniformly distributed binary vectors of length n . However,

there are many applications where the set of input patterns is not uniformly dis-

tributed; the input patterns are correlated. For example, different human faces

have many correlated features, but we are able to recognize a very large

number of faces. In mathematical terms, the set K of input patterns would not

be uniformly distributed over the entire space of 2" possible patterns (see Fig-

ure 6). Let the probability distribution function for the Hamming distance

Figure 6. A schematic diagram of how the distribution of input patterns could be non-
uniform in the space of all 2" such patterns. The set K could be distributed only over a
very small region of the entire space. To r e d 1 the correlated patterns in this distribu-
tion. construct the rows of the matrix A with the same distribution and adjust the
Hamming-distance threshold D so that the proper number of locations are selected.

between two randomly chosen vectors pa and pp from the distribution K be

given by the function p(d(pa-pB)). For the moment, assume that this distri-

bution function is approximately Gaussian with mean y n , where

l / n c y S n/2. Recall that for a uniform distribution of patterns, p(x) is just

a binomial distribution with mean n/2.

The SDM can be generalized from Kanerva's original formulation so that

For the correlated input patterns can be associated with output patterns.

moment, assume that the distribution set IC and the probability density function

p(x) are known a priori. Instead of constructing the rows of the matrix A from

the entire space of 2" patterns, construct the rows of A from the distribution K.

Adjust the Hamming distance D so that = 6m locations are selected. In

other words, adjust D so that the value of 6 is the same as given above, where

6 is determined by

- 30 -

Using the same distribution for the rows

patterns in K, and using (50) to specify the

of A as the distribution of the

choice of D , all of the above

analysis is applicable.6 The SDM wil l be able to recover data stored with corre-

lated inputs with a fidelity given by Equation (28).

In general, the distribution K could be much more complicated than

described above. The set of patterns could be clustered in many correlated

groups distributed over a large portion of the entire pattern space. In that case,

the probability density function p(p"- pp) would depend on the patterns p.

These patterns could also be stored using the same distribution for the rows of

A as the distribution of K. In this case, the Hamming distance D would have

to be determined dynamically to keep 6 constant. This can be achieved by a

feedback loop that compares the present value of 6 to the desired value and

adjusts D accordingly. Circuitry for this is straightforward to construct (Keeler

& Denning 1986), and a mechanism of this sort is found in the cerebellum

(Marr, 1969; see the Appendix).

There are certain biological memory functions that seem to be pre-

programmed and have an a priori knowledge of what to expect as input from

the outside world. This knowledge is equivalent to knowing something about

the distribution function K. However, what if the distribution function K is not

' known a priori? In that case, we would need an algorithm for developing an A

matrix that mimics the distribution of K, and the elements of A would be
~

Assuming randomly chosen output patterns. If the outputs are also correlated, the
mean of the noise is not 0. However, if the distribution of outputs is also known. the
system can still be made to work by adjusting the final threshold.

- 31 -

modifiable. There are many ways to build A to mimic K. One such way is to

start with a random A matrix and modify the entries of 6 randomly chosen

rows of A at each step according to the statistics of the most recent input pat-

terns. Another method is to use competitive learning (Grossberg, 1976 &

Kohonen, 1984) to achieve the proper distribution of A (see Keeler, 1987 for

de tails).

Conclusion

The SDM model is attractive for its versatility and expandability. The

number of patterns that can be stored in the SDM is independent of the size of

the patterns, and the SDM can be used as an autoassociative or heteroassocia-

tive memory. The SDM can also be used to store sequences and can even

retrieve correct sequences from contextual information by using folds. By

adjusting the distribution of the A matrix, the SDM can also be used to associ-

ate patterns with correlated inputs.

The Hopfield model is attractive both for its simplicity and for its computa-

tional ability at approximating solutions to optimization problems. Moreover,

the above investigation shows that the Hopfield model can also be used as a

heteroassociative memory and can store sequences if synchronous updating is

used.

Since the bit capacity per matrix element of the two networks is the same,

what are the advantages of using one model instead of the other? The advan-

tages would depend on the particular application. The SDM allows a greater

number of patterns of a given size to be stored, but one has to pay a price for

this in terms o f j h e A matrix calculation. There are some applications where

this extra calculation would be worth the effort. For example, storing many

correlated patterns or sequences of patterns would be much easier to do in the

SDM than in the Hopfield model. On the other hand, there are some

- 32 -

applications where the Hopfield model would be the best choice. For instance,

if speed is the main constraint instead of capacity, it would be better to use the

Hopfield model.

One of the main objections of using the Hopfield model as a model of bio-

logical neural networks is that the connections in the Hopfield model are sym-

metric. The above analysis demonstrates a way to analyze networks without the

requirement of symmetric matrices. The SDM has no symmetry requirement

and may therefore present a more realistic model of biological systems.

Indeed, the SDM model is equivalent to Marr’s (1969) model of the cerebel-

lum (see Appendix). Marr’s model was built up from the cellular level and

includes a function for every neuron type found in the cerebellum. In that

sense, the SDM is a very plausible model of biological memory.

Perhaps the most important feature of the above analysis is the similarity

of the two models. These two memory models were developed from totally

different points of view, yet they share many common features, and it was

shown how these model can perform many of the same tasks. It was also

shown that the bit capacity per matrix element is the same for the Hopfield

model, the SDM, and the models with higher order interactions. These results

indicate that there might be some universal behavior governing systems with

Hebbian learning rules. There is still much work to be done to make the con-

nection between these models and any biological system, but the similarities

between these systems indicate that the SDM and the Hopfield model may

have captured some of the essential underlying properties of neural networks.

Future investigations and extensions of these models should prove fruitful for

understanding biological systems and designing machines to mimic various bio-

logical tasks.

Acknowledgements

- 33 -

I thank Pentti Kancrva for useful discussions on this material and careful

proofing of the text. I also thank David Rumelhart for useful comments on the

text. Part of this work was done while visiting at the Research Institute for

Advanced Computer Science at NASA Ames Research Center. This visit was

made possible by a consortium agreement with Gary Chapman at NASA-Ames

and Henry Abarbanel of the Institute for Nonlinear Science at U.C. San Diego.

- 34 -

Appendix: Relation of the SDM to the Cerebellum

The cerebellum is a part of the brain that is important in the coordination

of complex muscle m~vernen t s .~ The neural organization of the cerebellum is

highly regular: billions of Purkinje cells are stacked in parallel planes with about

a hundred thousand mons from granule cells piercing these planes. The input

to the cerebellum is through the mossy fibers which synapse on the granule

cells (see Figure Al) . The cerebellum also receives input from the inferior

olive by means of the climbing fibers, which are in a one-to-one correspon-

dence with the Purkinje cells and wrap themselves around the Purkinje cells.

The sole output of the cerebellum is through the axons of the Purkinje cells.

David Man (1969) modeled the cerebellum (see also Gilbert, 1974) in a

fashion that is mathematically equivalent to the SDM The correspondence

between the neurons in the cerebellum and the SDM model is as follows: The

mossy fibers are the input to the SDM. The granule-cell mons are the select

lines (this makes sense since the granule cells are the most populous neurons

in the brain). It turns out that only a small fraction of the granule cells are

firing at any one time. This fraction is the 6 described above. If the granule

cells receive the proper input from the mossy fibers, the granule cells fire, and

they synapse on the Purkinje cells. The Purkinje cells lire if they receive

enough input from the granule cells. Hence the Purkinje cells form the output

layer, and the connections Cij are the synapses between the Purkinje cells and

the granule cells.
9

The hypothesis of Hebbian learning works as follows: The climbing fibers

relay information that is to be stored in the Purkinje cells, and this information

is writnn at the synapses that have active granule-cell input. This is the part of

Most of the similarities in this section were pointed out by Kanerva (1984). I ex-
pand on his and Marr's (1969) description here (see also Gilbert, 1974).

- 35 -

the theory that is the most controversial and is the hardest to check experimen-

tally.

There are three other types of neurons in the cerebellum that I have not

mentioned so far. The first two are called basket cells and stellate cells, both of

which synapse on the Purkinje cells. The function of the stellate cells is to

adjust the threshold of the Purkinje cells, which would correspond to adjusting

the threshold of the function g. The basket cells might not only adjust the

threshold of the Purkinje cells, but they could also adjust the gain of the cells

as well. The other type of cell is called a Golgi cell. The population of these

cells is about 10% of the population of Purkinje cells. The Golgi cells receive

input from the parallel fibers, and their axons synapse OD the granule-cell-

mossy-fiber clusters. The presumed function of the Golgi cell is to act as a

feedback mechanism to keep the number of k i n g granule cells constant. This

is analogous to a feedback mechanism for regulating 6 described above.

Marr and Kanerva assumed that the synapses between the mossy fibers

and the granule cells are fixed and that the inputs from the mossy fibers are

random. It is apparent from the above discussion that there is n o need for this

assumption. These synapses might be fixed with genetically coded a priori

knowledge of the expected inputs, or they could adjust in time to conform to

the distribution of the mossy fiber input. This would allow differentiation

between correlated inputs from the mossy fibers.

It is interesting that everything in the theory of the SDM fits in place in

the model of the cerebellum even though the cerebellar cortex was not the ori-

ginal motivation for the SDM. The function of all of the cells in the cerebel-

lum is not f i l ly understood, and the mechanism for learning might be different

than described above. However, the model seems to be faithful to everything

that is known so far about the working of the cerebellum.

Figure Al. A sketch of the neurons of the cerebellar cortex. Pu= Purkinje cell (black),
Go= Golgi cell (dotted), Gr= granule cell, Pa= parallel fiber, St= stellate cell, Ba= basket
cell, CI= climbing fiber, Mo= Mossy Fiber (black). Only a few of the cells are shown.
Usually, there are about 100,000 parallel fibers in the parallel fiber bundle, but only
about 500 of these are active at any one time. From 'The Cortex of the Cerebellum" by
Rodolfo R. Llinas. Copyright 1975 by Scientific American, Inc. All rights reserved.

,

- 36 -

References

Albus, J.S. (1971) A theory of Cerebellar Functions, Mathematical Biosci.
10 25-61.

Amari, S., (1971) Characteristics of Randomly Connected Threshold-
Element Networks and Network Systems, Proc. IEEE, 59, 35-47.

Amari, S., (1974) A method of statistical neurodynamics, Kybernerik 14,
201.

Amit, D. J., Gutfreund, H. & Sompolinsky, H. (1985) Storing an infinite
number of patterns in a spin-glass model -of neural networks; Phys. Rev.
Lett. 55, 1530-1533.

Anderson, J. A., Solverstein, J. W., Ritz, S. A. & Jones, R. S. (1977)
Psych. R e~., 84, 412-45 1.

Baldi, P., and Venkatesh, S. S., (1986) The number of stable points for
spin glasses and neural networks of higher orders, submitted to Phys.
R ev. Lett.

Cohn, D. Kanerva, P., & Keeler, J. D. (1986) unpublished.

Gilbert, P. F. C., (1974) A Theory of memory that explains the function
and structure of the cerebellum, Brain Research, 70, 1-18

Cohn, M. A., Grossberg, S. (1983), Absolute stability of Global Pattern
Formation and Parallel Memory Storage by Competitive Neural Net-
works, IEEE Trans. On Systems Man and Cybernetics, SMC-13.

Denning, P. (1986) A View of Kanerva’s Sparse Distributed Memory,
RIACS Technical Report 86.14.

Grossberg, S. (1971), Embedding Fields: Underlying philosophy,
mathematics, and applications to psychology, physiology, and anatomy, J.
Cyber., 1, 28-50.

Grossberg, S. (1976), Adaptic pattern classification and universal recod-
ing, I: Parallel development and coding of neural feature detectors. Biolog-
ical Cybernetics 23, 121-134.

Hebb, D. 0. (1949) The Organizarion of Behavior. John Wiley, New York.

Hopfield, J. J. (1982) Neural Networks and Physical Systems with Emer-
gent Collective Computational Abilities, Proc. Narl. Acad. Sci. USA
79 2554-2558.

Hopfield, J. J. (1984) Neurons with graded response have collective com-
putational properties like those of two state neurons, Proc. Natf. Acad. Sci.
USA 81 3088-3092.

- 37 -

,

Hopfield, J. J. & Tank, D. W., (1985) Neural Computation of Decisions
in Optimization Problems, Biological Cybern. 52 1-25.

Kanerva, P. (1984) Self-propagaring Search: A Unified Theory of Memory,
Stanford University Ph.D. Thesis, and Bradford Books (MIT Press). In
press (1987 est).

Kanerva, P. (1986) Parallel Structures in Human and Computer Memory,
RIACS Technical Report TR-86.2.

Keeler, J. D. (1987), University of California, San Diego, Ph.D. Thesis,
in preparation.

Keeler, J. D. & Denning, P. J., (1986) Notes on implementation of Sparsely
Disnibuted Memory, RIACS Technical Report, 86.15.

Kirkpatrick, S. & Sherrington, D. (1978) Phys Rev. 17 4384-4405.

Kleinfeld, D. (1986) Sequential State Generation by Model Neural Net-
works, submitted to PNAS

Kohonen, T. (1980) Content Addressable Memories, Springer-Verlag, Ber-
lin.

Kohonen, T. (1984) Sef-organization and Associative Memory, Springer-
Verlag, Berlin.

Lee, Y. C.; Doolen, G.; Chen, H. H.; Sun, G. 2.; Maxwell, T.; Lee, H.
Y.; & Giles, L. (1985) Machine learning using a higher order correlation
network, Physica D, 23, Conference on Evolution Games & Learning.

Little, W. A. & Shaw, G. L.(1978)Math. Bwsci. 39, 281-289.

Marr, D., (1969) J. of Phisiol., A Theory of Cerebellar Cortex, 202, 437-
470.

McCulloch, W. S. & Pitts, W. (1943), A logical calculus of the ideas
immanent in nervous activity, Bull. Math. Biophys. 5 , 115-133.

McEliece, R. J., Posner, E. C., Rodemich, E. R., & Venkatesh, S. S.
(1986), The Capacity of the Hopfield Associative Memory, IEEE Trans.
on Information Theory.

Nakano, K. (1972), Association - A model of associative memory, IEEE
Trans. Sys. Man Cyber. 2, 380-387. .

Shannon, C. E., (1948), A Mathematical Theory of Communication. Bell
Syst. Tech. J. , 27, 379,623 (Reprinted in Shannon and Weaver 1949) .
Sompolinsky, H. & Kanter, I. (1986) Temporal Association in Asym-
metric Neural Networks, submitted to Phys. Rev. Lerrers.

Willshaw, D. J., Buneman, 0. P. & Longuet-Higgins, H. C., (1969) Non-
holographic Associative Memory Nature, 222 960-962.

